S.5 CHEMISTRY

COLLIGATIVE PROPERTIES

There are four colligative properties of a dilute solution

These are; vapour pressure lowering

Boling point elevation

Freezing point depression

Osmotic pressure

Questions on vapour pressure lowering

The vapour pressure of carbon disulphide at 25°C, is 53216Pa. at the same temperature a solution of 5g of sulphur in 63cm³ of cabon disulphide has a vapour pressure of 52230Pa .density of carbon disulphide is 1.27gcm⁻³.find ;

The relative molecular mass of sulphur in carbon disulphide .

The molecular formula of sulphur in carbon disulphide.

[hint : $density = \frac{mass}{volume}$, molecular formula of sulphur in carbon disulphide is S_n , where n is the whole number]

- 2. The vapour pressure of pure water at 25°C is 3167Pa .the vapour pressure of a solution of 4g of a sugar in 100g of water at the same temperature is 3154.5Pa .what is the relative molecular mass of the sugar? Hence deduce the the name of the sugar.
- 3. (a) distinguish between vapour pressure and gas pressure

(b) explain the following observation .

(i) At a given temperature, an aqueous solution of glucose has a lower vapour pressure than pure water .

(ii) The vapour pressure of a mixture of ethanol and water is higher than that of pure water.

(c) The vapour pressure of a 3 percentage solution of camphor, $C_{10} H_{16}O$ in ethoxy

ethane, $C_4H_{10}O$, if the vapour pressure of pure ethoxy ethane at the same temperature is 32670Pa.

Question on boiling point elevation

- 1. (a) what is meant by the following terms.
 - (i) Boiling point of a liquid
 - (ii) Boiling point elevation of a liquid
 - (iii) Boiling point elevation constant

(b) the boiling point of ethanol is 78° C.Calculate the boiling point of a solution containing 2.7gof urea (NH₂CONH₂) in 75g of ethanol.(Boiling point elevation constant for 1000g of ethanol = 1.15° Cmol⁻¹).

solution

75g of ethanol dissolve 2.70g of urea

1000g of ethanol will dissolve $\frac{2.7 \times 1000}{75}$

= 36g

Relative formula mass of urea ,NH₂CONH₂ =14X2 +1X4 +12 +16

=60

BOLING point elevation , $\Delta T = T_1 - T_0$

Where T_1 = boiling point of the solution

 T_0 = boiling point of the pure solvent (ethano)l= 78^oC

60g of urea in 1000g of ethanol will cause an elevation of 1.15°C

36g of urea in 1000g of ethanol cause an elevation of $\frac{1.15 \times 36}{60}$

= 0.69°c

therefore $\Delta t = 0.69^{\circ}c$

But $\Delta T = T_1 - T_0$

0.69 =T₁ - 78

T₁ = 78+0.69

T₁ =78.69⁰C

USING THE WORKED EXAMPLE ABOVE ANSWE THE FOLLWING QUESTIONS

 2.00g of phosphorus was dissolved in 37.4g of carbon disulphide to form a solution which boils at 57.003°C. Calculate the relative formula mass of phosphorus and hence the molecular formula of phosphorus in carbon disulphide.[Boiling point of carbon disulphide is 56°C and the boiling point elevation constant for carbon disulphide is 2.35°C for 1mole in 1000gof the solvent]